Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence
نویسندگان
چکیده
Numerical solutions to Newtons equations of motion for chaotic self gravitating systems of more than 2 bodies are often regarded to be irreversible. This is due to the exponential growth of errors introduced by the integration scheme and the numerical round-off in the least significant figure. This secular growth of error is sometimes attributed to the increase in entropy of the system even though Newton’s equations of motion are strictly time reversible. We demonstrate that when numerical errors are reduced to below the physical perturbation and its exponential growth during integration the microscopic reversibility is retrieved. Time reversibility itself is not a guarantee for a definitive solution to the chaotic N-body problem. However, time reversible algorithms may be used to find initial conditions for which perturbed trajectories converge rather than diverge. The ability to calculate such a converging pair of solutions is a striking illustration which shows that it is possible to compute a definitive solution to a highly unstable problem. This works as follows: If you (i) use a code which is capable of producing a definitive solution (and which will therefore handle converging pairs of solutions correctly), (ii) use it to study the statistical result of some other problem, and then (iii) find that some other code produces a solution S with statistical properties which are indistinguishable from those of the definitive solution, then solution S may be deemed veracious.
منابع مشابه
A wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملNumerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملNewton-Product Integration for a Stefan Problem with Kinetics
Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملNumerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function
The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.00970 شماره
صفحات -
تاریخ انتشار 2018